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Case-study: Flocculation process
• First principles models: population and mass balance models

• Bin-specific agglomeration and breakage kinetic rates predicted 
using a probabilistic deep neural network

• Trained using time-series data
• pH and PSD every 5 minutes
• 9 batch operations (1 hour)
• Tested on breakage-batch

• Future perspectives
• Model based design of experiments (min. model uncertainty)
• Extending model predictive control strategy [2] to include 

uncertainty (decision-making under uncertainty)

Uncertainty analysis of hybrid model
• Deterministic hybrid model framework presented by 

Nielsen et al. [1]

• Trained using time-series data of measured process 
variables (x) and control actions (z)

• ML model predicting kinetic rates (y), used in mechanistic 
model, giving predictions of future process variables (x)

• Data-driven model is the primary source to model 
uncertainty. A probabilistic model needed!

Hybrid modelling of CPPs and CQAs

• Product variations likely to cause need for reprocessing, 
reduced throughput, and/or discard of product!

• Model based design of experiments for process design 
and/or model predictive control could potentially solve 
problem

• Hybrid modelling shown to be an efficient and pragmatic 
modelling approach if time-series measurements of 
CPPs and CQAs are available

Probabilistic hybrid model
• Including uncertainty during model training on all three levels

1. Measurement/sampling uncertainty of input and output
2. Modelling process stochasticity with data-driven model
3. Making data-driven model parameters stochastic

• Training model by minimizing negative log-likelihood and 
divergence loss between prior and posterior distribution of model 
parameters

Process stochasticity uncertainty
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Further interested in hybrid modelling? Visit Nima Nazemzadeh and Alina 
Malanca at the poster Integration of computational chemistry and machine 
learning in a multi-scale modeling framework: An application on flocculation 


